Abstract
Abstract A realistic hindcast simulation of the Salish Sea, which encompasses the estuarine systems of Puget Sound, the Strait of Juan de Fuca, and the Strait of Georgia, is described for the year 2006. The model shows moderate skill when compared against hydrographic, velocity, and sea surface height observations over tidal and subtidal time scales. Analysis of the velocity and salinity fields allows the structure and variability of the exchange flow to be estimated for the first time from the shelf into the farthest reaches of Puget Sound. This study utilizes the total exchange flow formalism that calculates volume transports and salt fluxes in an isohaline framework, which is then compared to previous estimates of exchange flow in the region. From this analysis, residence time distributions are estimated for Puget Sound and its major basins and are found to be markedly shorter than previous estimates. The difference arises from the ability of the model and the isohaline method for flux calculations to more accurately estimate the exchange flow. In addition, evidence is found to support the previously observed spring–neap modulation of stratification at the Admiralty Inlet sill. However, the exchange flow calculated increases at spring tides, exactly opposite to the conclusion reached from an Eulerian average of observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.