Abstract

The continuous chain of residues (Thr7 to Ala12) of Loopl of Fas2 (F1) and its interaction with the peripheral binding sites (Tyr70-Val71) of AChE (P1) has been studied. Our results suggest that the flexibility of Loopl might be caused by either the partially protonated guanidine group of Arg11 under experimental conditions or by the interaction with the negatively charged center of substrates. The binding energy of F1-P1 is predicted to be −16.6 kcal/mol at the B3LYP/6–311G(d,p) level, which is assumed to originate from one isolated O7…HN10 H-bond, one possible O10…HC71 unconventional O…HC type H-bonding, and the improved π-bonding cooperativity around the peptide group of the AChE segment Tyr70-Val71. The classical Kitaura-Morokuma energy decomposition analysis, the NPA charge analysis, and the AIM analysis consistently reveal that the peptide group in segment P1 is more polarizable, which might play the key role in the interactions between F1 and P1. The PCM solvent effect corrected results reveal decrease of the interaction energy of the considered model. The importance of Thr8 of Fas2 in the P-site binding of AChE is also concluded. Site-directed mutations on either the Fas2 residue of Thr8 or the AChE residue of Tyr70 are expected to alter the binding behavior of the Loop1 of Fas2 with AChE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.