Abstract

Modelling plant growth and architecture requires two consecutive and complementary approaches. The first is a qualitative botanical analysis, in which the development sequence of a tree is studied by the identification of various levels of organisation and of homogeneous subunits. All of these — architectural unit, axis, growth unit — follow particular growth processes which can be described by using the second approach, the quantitative analysis. Modelling of the functioning of meristems based upon stochastic processes has been carried out since 1980, in combination with a large amount of experimental work on temperate and tropical plants. Calculations involved in tree simulations from field data are based upon the probabilistic Monte Carlo method for the topological part and on analytical geometry for the morphological part. Computer graphics methods are then used to visualise the computed plant. Several sectors in agroforestry are concerned with application of such plant architecture modelling: tree growth and yield, radiative transfers, timber quality and mechanics, simulation of competition, interaction between plant morphology and physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.