Abstract
In this paper, the design, simulation and experimental verification of a self-learning fuzzy logic controller (SLFLC) suitable for the control of nonlinear servo systems are described. The SLFLC contains a learning algorithm that utilizes a second-order reference model and a sensitivity model related to the fuzzy controller parameters. The effectiveness of the proposed controller has been tested in the position control loops of two chopper-fed DC servo systems, first by simulation in the presence of a backlash nonlinearity, then by experiment in the presence of a gravity-dependent shaft load and fairly high static friction. The simulation and experimental results have proved that the SLFLC provides desired closed loop behavior and eliminates a steady-state position error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.