Abstract
Dynamic mode decomposition (DMD) describes the dynamical system in an equation-free manner and can be used for the prediction and control. It is an efficient data-driven method for the complex systems. In this paper, we extend DMD to the parameterized problems and propose a model reduction method based on DMD to improve the computation efficiency. This method is an offline-online mechanism. In the offline phase, we need to generate the snapshots data by solving the parameterized equations for each parameter in the training set and perform the singular value decomposition (SVD) to get the reduced operator matrices, which would lead to the substantial computation. The weighted & interpolated nearest-neighbors algorithm (wiNN) is adopted to construct the efficient surrogate models of the reduced operator matrices (including the reduced Koopman operator matrix and SVD-modes). In the online phase, for each parameter, we only need to perform the operations based on the low-dimensional matrices to get the parameter DMD solution. Moreover, we choose the least squares radial basis function finite difference method for the spatial discretization. This can make our method more applicable to the parameterized problems defined on complex geometries. At last, the reaction-diffusion, the incompressible miscible flooding and the incompressible Navier-Stokes models defined on the complex geometries are presented to illustrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.