Abstract

Orthogonal frequency-division multiplexing (OFDM) combines the advantages of high performance and relatively low implementation complexity. However, for reliable coherent detection of the input signal, the OFDM receiver needs accurate channel information. When the channel exhibits fast time variation as it is the case with several recent OFDM-based mobile broadband wireless standards (e.g., WiMAX, LTE, DVB-H), channel estimation at the receiver becomes quite challenging for two main reasons: 1) the receiver needs to perform this estimation more frequently and 2) channel time-variations introduce intercarrier interference among the OFDM subcarriers which can degrade the performance of conventional channel estimation algorithms significantly. In this paper, we propose a new pilot-aided algorithm for the estimation of fast time-varying channels in OFDM transmission. Unlike many existing OFDM channel estimation algorithms in the literature, we propose to perform channel estimation in the frequency domain, to exploit the structure of the channel response (such as frequency and time correlations and bandedness), optimize the pilot group size and perform most of the computations offline resulting in high performance at substantial complexity reductions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.