Abstract

The performance of most controllers, including proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) controllers, depends upon tuning of control parameters. In this study, we propose a novel tuning strategy for PID and PIPD controllers whose control parameters are tuned using the extended non-minimal state space model predictive functional control (ENMSSPFC) scheme based on the auto-regressive moving average (ARMA) model. The proposed control method is applied numerically in the operation of the MCFC process with the parameters of PID and PIPD controllers being optimized by ENMSSPFC based on the ARMA model for the MCFC process. Numerical simulations were carried out to assess the set-point tracking performance and disturbance rejection performance both for the perfect plant model, which represents the ideal case, and for the imperfect plant model, which is usual in practical applications. When there exists uncertainty in the plant model, the PIPD controller exhibits better overall control performance compared to the PID controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.