Abstract
In this paper, a step-ahead direct power control (DPC) scheme with reduced sensor count for grid-connected active rectifiers with LCL filter is formulated. Compared to classical model predictive control (MPC) schemes, which implement an L filter, the proposed controller is designed to operate with an LCL filter and thus benefit from higher harmonic attenuation and lower component size and weight. In this work, an expression is derived to allow the prediction of the grid-side current by only measuring the dc-bus voltage, grid voltages, and grid-side line currents. As a result, only 6 sensors are required as opposed to 9 or 12 sensors. An extensive digital computer simulation using Matlab/Simulink is used to demonstrate the validity and performance of the proposed step-ahead DPC scheme. The widely used classical proportional integral (PI)-based power controller is used as a reference to benchmark the steady-state and dynamic performance of the proposed control scheme. The results validate the proposed controller and show its sound steady-state performance consisting of high quality grid-side currents with low Total Harmonic Distortion and unity power factor. In addition, robust and rapid dynamic performance is demonstrated when compared to the classical PI-based controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.