Abstract

A stochastic model is presented for nanoparticle transport in a biofilm to explain how the combination of acoustic oscillations and intermittent retention due to interaction with the pore walls of the biofilm leads to diffusion enhancement. An expression for the effective diffusion coefficient was derived that varies with the square of the oscillation velocity amplitude. This expression was validated by comparison of an analytical diffusion solution to the stochastic model prediction. The stochastic model was applied to an example problem associated with liposome penetration into a hydrogel, and it was found to yield solutions in which liposome concentration varied exponentially with distance into the biofilm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.