Abstract

AbstractA tuned liquid damper (TLD), which consists of rigid tanks partially filled by liquid, is a type of passive control device relying upon liquid sloshing forces or moments to change the dynamical properties and to dissipate vibrational energy of a structure. An analytical non‐linear model is proposed for a TLD using rectangular tanks filled with shallow liquid under pitching vibration, utilizing a shallow water wave theory. The model includes the linear damping of the sloshing liquid, which is an important parameter in the study of a TLD as it affects the efficiency of the TLD. Shaking table experiments were conducted for verification; good agreement between the analytical simulations and the experimental results was observed in a small excitation amplitude range. The simulations of TLD‐structure interaction by using the proposed model show that the TLD can efficiently suppress resonant pitching vibration of a structure. It is also found that the effectiveness of a TLD for suppressing the pitching vibration depends not only on the mass of liquid in the TLD but also on the configuration of the liquid as well as upon the position where the TLD is located. If the configuration of the liquid, i.e. the liquid depth and the TLD tank size, is designed suitably, the TLD can have a large suppressing moment and can be very effective even with a small mass of liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.