Abstract
The C50 of remifentanil for ventilatory depression has been previously determined using inspired carbon dioxide and stimulated ventilation, which may not describe the clinically relevant situation in which ventilatory depression occurs in the absence of inspired carbon dioxide. The authors applied indirect effect modeling to non-steady state Paco2 data in the absence of inspired carbon dioxide during and after administration of remifentanil. Ten volunteers underwent determination of carbon dioxide responsiveness using a rebreathing design, and a model was fit to the end-expiratory carbon dioxide and minute ventilation. Afterwards, the volunteers received remifentanil in a stepwise ascending pattern using a computer-controlled infusion pump until significant ventilatory depression occurred (end-tidal carbon dioxide [Peco2] > 65 mmHg and/or imminent apnea). Thereafter, the concentration was reduced to 1 ng/ml. Remifentanil pharmacokinetics and Paco2 were determined from frequent arterial blood samples. An indirect response model was used to describe the Paco2 time course as a function of remifentanil concentration. The time course of hypercarbia after administration of remifentanil was well described by the following pharmacodynamic parameters: F (gain of the carbon dioxide response), 4.30; ke0 carbon dioxide, 0.92 min-1; baseline Paco2, 42.4 mmHg; baseline minute ventilation, 7.06 l/min; kel,CO2, 0.08 min-1; C50 for ventilatory depression, 0.92 ng/ml; Hill coefficient, 1.25. Remifentanil is a potent ventilatory depressant. Simulations demonstrated that remifentanil concentrations well tolerated in the steady state will cause a clinically significant hypoventilation following bolus administration, confirming the acute risk of bolus administration of fast-acting opioids in spontaneously breathing patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.