Abstract

Rubella virus contains three major structural polypeptides designated E1, E2, and C with molecular weights of 62,000, 47,000-54,000 (a complex), and 38,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reduced conditions. Limited-digest peptide maps confirm that each of these polypeptides is distinct and the E2 is a series of three closely related glycopolypeptides. Both E1 and E2 are glycosylated and covalently incorporate [3H]palmitic acid. Enzymatic digestion of intact virus with trypsin completely degrades both E1 and E2, while the C polypeptide remains intact. E1 has an isoelectric point of pH 6.5. E2 exhibits at least 15 different isoelectric species, which focus over the pH range of 5.0-8.6, and C has two distinct isoelectric species of pH 8.8 and pH 9.5. Under unreduced conditions, E1 exists as a disulfide-bonded dimer (E1-E1) with a molecular weight of 105,000; a disulfide-bounded heterodimer (E1-E2) with a molecular weight of 95,000; and in monomeric form (E1). E2 is found predominantly in heterodimeric form (E1-E2), and C is found only in dimeric form when unreduced. Functional-inhibition studies with selected monoclonal antibodies show at least three distinct antigenic domains on E1 that include sites involved in hemagglutination and lysis of red blood cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.