Abstract

Seasonal changes in the light and temperature dependence of photosynthesis were investigated in field grown plants of Mercurialis perennis and Geum urbanum. In both species changes in photosynthetic capacity were closely related to the development of the overstorey canopy. In G. urbanum there was a marked shift in the temperature dependence of photosynthesis through the season whereas no such pattern was found in M. perennis. Model predictions of field rates of photosynthesis were made using the measurements of light and temperature dependence in the laboratory and validated against field observations. Long term continuous records of light and temperature in the field were used in conjunction with the model to make predictions of carbon acquisition in shoots of the two species through the season. These calculations indicated that G. urbanum was able to take advantage of high light levels just prior to canopy closure through a combination of high photosynthetic capacity, the ability to maintain photosynthesis at relatively low temperatures and the presence of overwintering leaves. In M. perennis leaf development was early enough to utilise the high spring light period. After canopy closure M. perennis maintained a higher average rate of CO2 flux due to a combination of high apparent quantum efficiency and low rates of respiration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.