Abstract
Many cellular and physiological processes have been shown to display a rhythm of about 24 hours. This so-called circadian rhythm is based on a system of interlocked negative and positive molecular feedback loops. Here we extend a previous model of the circadian oscillator by including REV-ERBalpha as an additional component. This new model will allow us to investigate the function of an additional negative feedback loop via REV-ERBalpha. We obtain circadian oscillations with the correct period and phase relations between clock components. Parameter variations that correspond to clock-gene mutations reproduce experimental results: With parameter variations mimicking the Bmal1(-/-) and the Per2(Brdm1) mutation the oscillations cease to exist. In contrast, the system shows sustained oscillations if we use a parameter set that reflects the Rev-erbalpha mutation. The model also accounts for the differential effect of the Cry1(-/-) and Cry2(-/-) mutations on the circadian period. The simulations of the extended model indicate that the original model is robust with respect to the incorporation of the additional component. Depending on the kinetics of the Per2/Cry transcriptional activation by BMAL1, an increasing BMAL1 expression leads to either an increase or decrease of the clock period. This indicates that overexpression experiments could help to characterize the impact of BMAL1 on Per2/Cry transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.