Abstract

The interdiffused multilayer process (IMP) is a novel approach to growing Hg1−xCdxTe. In this process, alternating thin films of HgTe and CdTe are grown and allowed to interdiffuse resulting in a bulk material of constant composition. A model of the IMP must include the effects of both the deposition of new material and the interdiffusion of the material. It must also be able handle the flush phases of the IMP where the growth rate decays to zero. Existing approaches to modeling epitaxial growth of Hg1−xCdxTe treat growth and interdiffusion as separate, sequential steps resulting in numerical stability problems, pseudodiffusion effects, or flush phase modeling problems. The model presented here, however, is based on an incremental balance where growth and diffusion occur simultaneously, resulting in a model exhibiting none of the difficulties mentioned above. The IMP growth model is integrated with a model for calculating reflectance from a laser directed at near normal incidence angle. The predicted reflectance is compared to experimental measurements and showed a good preliminary fit when the model employed default parameters. The agreement is greatly improved after parameter fitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.