Abstract

A mathematical model of the hydrostatic skeleton of the leech has been developed to predict the shape of and internal pressure within the animal in response to a given pattern of motor neuron activity in different behaviors. The model incorporates experimental data on: the dimensions of the animal at behavioural extremes, the passive properties of the tissues, the active length–tension behavior of the muscles in response to neural activation, the relations between firing frequencies and forces developed by the muscles. The model is based on three general assumptions: (i) the cross-sectional geometry of each segment is elliptical, (ii) the volume of each segment remains constant during movement, (iii) the shape of the animal reflects dimensions that minimize the total potential energy. Presently the model is implemented to simulate the vermiform elongation of the leech, predicting the shape and the pressure changes during behavior. The results are in good agreement with the experimental measurements. The pattern of motor neuronal activity was determined by the known intersegmental travel time and estimated delay time between relaxation of the longitudinal muscles and the activation of the circular muscles. The anesthetized state of the leech was taken as the reference state for the model in which the active and passive stresses are zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.