Abstract

The grinding process has particular interest in that contact temperatures have great significance for quality and integrity of machined surfaces. Hardened surfaces may be damaged by softening and or being stressed, being hardened or re-hardened, burned or cracked. It is important in grinding for the fluid to remove heat from the grinding contact zone to avoid thermal damage to the workpiece surface and/or sub-surface layers. The cooling effect of grinding fluid can be quantified by the convective heat transfer coefficient (CHTC) acting in the grinding zone. This paper presents values of the CHTC based on measured grinding temperatures. The paper also presents a new convective heat transfer model based on principles of applied fluid dynamics and heat transfer. Predicted values for the CHTC calculated from the model are compared with results from experiment obtained under a range of grinding conditions and with experimental data. The results demonstrate that the new CHTC model improves the accuracy of prediction and helps explain the variation in the value of CHTC under varying process conditions. Results also show that convection efficiency strongly depends on the grinding wheel speed, grinding arc length and fluid properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.