Abstract

A mathematical model of the electrochemical behaviour within a stress corrosion crack is proposed. Polarization field, crack geometry, surface condition inside the crack, electrochemical kinetics, solution properties and applied stress can be represented by the polarization potential and current, the electrochemical reactive equivalent resistance of the electrode, the change in electrolyte specific resistance and surface film equivalent resistance, respectively. The theoretical calculated results show that (i) when anodic polarization potential is applied, the change in the crack tip potential is small; (ii) when cathodic polarization potential is applied, the crack tip potential changes greatly with the applied potential; (iii) the longer the crack, the smaller the effect of the applied potential on the crack tip potential in both anodic polarization and cathodic polarization conditions. The calculated results are in good agreement with previous experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call