Abstract

The paper deals with calculation of parameters in the near-cathode plasma layer, on the cathode surface and in the body of a cathode in high-pressure arc discharges. These parameters can be calculated independently of the arc column if the heat flux coming from the column to the edge of the near-cathode layer does not play a decisive role in the energy balance of the layer, which, according to the estimates presented, is a likely case. The physics of the near-cathode layer is reconsidered in view of major contradictions that have appeared in the literature recently, in particular with regard to the role of the near-cathode space charge sheath. A model of a near-cathode layer is developed that is based on a multifluid description of the plasma and takes into account multiply charged ions. The model is employed to calculate parameters of the layer as functions of the voltage drop in the layer and of the local value of the surface temperature. By means of these data, an approximate asymptotic theory of arc spots is extended to cathode spots in high-pressure plasmas. Calculated spot parameters are presented for the following combinations cathode/plasma: tungsten/argon, thoriated-tungsten/argon, thoriated-tungsten/nitrogen, and zirconium/nitrogen. The obtained results agree with the recent measurements of the spot temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call