Abstract

In order to overcome the shortcoming of traditional strength modeling of glass fiber reinforced polymer (GFRP) composite laminates that require a large amount of strength test data, a strength degradation model on the account of residual stiffness degradation data is proposed. First, fatigue damage growth can be described by the gradual reduction of the stiffness and strength, and damage expressed by the two degradation methods are equivalent. Second, according this assumption, the connection between the two damage indices is established, and then a four parameters strength degradation model is obtained. Finally, the proposed model is validated by the applying experimental data of GFRP laminates, and the precision of proposed model is contrasted with other four models. Verification results indicate that if the residual stiffness degradation data is known, the residual strength degradation law can be predicted by a small number of residual strength tests and the presented model has better applicability and higher fitting accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.