Abstract

Our simple kinetic model, based on the classic “binding change mechanism”, describes the stepping kinetics for the rotary enzyme motors. The model shows that the cooperative interactions between active sites in the motor enzyme F1-ATPase induce the stepping product release. This phenomenon results from non-harmonic oscillations in the enzyme forms. The found rate constants, corresponding to the stepping phenomenon, are close to the rate constants known for the F1-ATPase. The duration of dwells during the product release is shown to depend on the ATP concentration in accordance with the known experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.