Abstract
Breast cancer (BC) is the most frequently malignancy in women. Therefore, establishment of an animal model for the development of preventative measures and effective treatment for tumors is required. A novel heterogeneous spontaneous mammary tumor animal model of Kunming mice was generated. The purpose of this study was to characterize the spontaneous mammary tumor model. Histopathologically, invasive nodular masses of pleomorphic tubular neoplastic epithelial cells invaded fibro-vascular stroma, adjacent dermis and muscle tissue. Metastatic spread through blood vessel into liver and lungs was observed by hematoxylin eosin staining. No estrogen receptor (ER) or progesterone receptor (PR) immunoreactivity was detected in their associated malignant tumors, human epidermal growth factor receptor-2 (HER-2) protein weak expression was found by immunohistochemistry. High expression of vascular endothelial growth factor (VEGF), moderate or high expression of c-Myc and cyclin D1 were observed in tumor sections at different stages (2, 4, 6 and 8 weeks after cancer being found) when compared with that of the normal mammary glands. The result showed that the model is of an invasive ductal carcinoma. Remarkably in the mouse model, ER and PR-negative and HER2 weak positivity are observed. The high or moderate expressions of breast cancer markers (VEGF, c-Myc and cyclin D1) in mammary cancer tissue change at different stages. To our knowledge, this is the first report of a spontaneous mammary model displaying colony-strain, outbred mice. This model will be an attractive tool to understand the biology of anti-hormonal breast cancer in women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.