Abstract

1. A unified model of the properties of stretch responses of mammalian spindle endings is proposed. This model encompasses the disparity between sensitivity of spindle endings to small and to large stretch of the muscle as well as the disparity in their dynamic responsiveness for different amplitudes of stretch. 2. In the model the mechanical properties of intrafusal fibers include a property akin to friction, which is hypothesized on the basis of reported observations on amphibian muscle. Transducer and encoder processes are modeled in the light of recent observations on isolated spindles. The model involves five unknown parameters whose values are selected by reference to certain reported observations on deefferented primary and secondary endings. The model can be used to predict responses to length changes of arbitrary time course. 3. Predicted responses to large ramp-and-hold stretch are quantitatively comparable to observations over a wide range of stretch velocities. The quantities compared include the increment in response during ramp stretch as well as the dynamic index, which is a measure of adaptation at stretch plateau. 4. At a fixed frequency of sinusoidal stretch, the relation between amplitudes of stretch and response is predicted in quantitative agreement with measurements. As the frequency of stretch is decreased, the predicted phase lead decreases and then increases, while the sensitivity decreases monotonically, in accord with observations. 5. In the model the high sensitivity for small stretch is not specific to any particular length of the muscle. When stretch is large, the region of high sensitivity is gradually reestablished at the new length, a phenomenon referred to as resetting. The dynamic response to a large stretch can be seen as arising, for the most part, from the dynamic process of resetting. 6. The influences of static or dynamic fusimotor activation on stretch responses of the primary ending are simulated by modifying the parameter values in the model. The modifications are such that static (dynamic) fusimotor activity speeds up (slows down) the resetting of the high-sensitivity region. The predictions mimic qualitatively the observed fusimotor effects not only on the response to large ramp stretch but also the contrasting effects seen with smaller, sinusoidal stretch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call