Abstract

This article deals with optimal spatio-temporal development of capital and labour stocks in a production economy with spatial extension. Current stocks of capital and labour are used to produce a commodity, partly invested to replace worn capital, partly consumed. These stocks can be relocated in space, but relocation uses up some of the inputs themselves. Under these constraints the objective is to maximize a utility measure derived from per capita consumption and aggregated over individuals, space and time. The necessary conditions for optimum are derived as Euler equations of a continuous variational problem. They concern choice of production scale and technology, rate of reinvestment, and optimal flows of labour and produced commodities through space. The Lagrangian multipliers of the constraints are interpreted as imputed wages and commodity prices. The whole structure of optimum depends on these imputed wages and prices, and their solution can be derived from a pair of dependent non-linear partial differential equations. The spatial flow portrait at each moment depends on the time parameter and on the parameters of the model (net reproduction and capital depreciation rates). It can undergo sudden changes described by the elliptic and hyperbolic umbilic catastrophes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.