Abstract

The indentation hardness–depth relation established by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425] agrees well with the micro-indentation but not nano-indentation hardness data. We establish an analytic model for nano-indentation hardness based on the maximum allowable density of geometrically necessary dislocations. The model gives a simple relation between indentation hardness and depth, which degenerates to Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425] for micro-indentation. The model agrees well with both micro- and nano-indentation hardness data of MgO and iridium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.