Abstract

We propose a model to explain a puzzling 3:2 frequency ratio of high frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The upper frequency is fitted by a rotating hotspot near the inner edge of the disc, which is produced by the energy transferred from the BH to the disc, and the lower frequency is fitted by another rotating hotspot somewhere away from the inner edge of the disc, which arises from the screw instability of the magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs in these X-ray binaries could be well fitted to the observational data with a much narrower range of the BH spin. In addition, the spectral properties of HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is contained naturally in our model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call