Abstract

The potential fluctuations in III-nitride quantum wells lead to many effects like emission broadening and S-shape energy vs. temperature dependence. The best description of the energy dependence comes from calculations based on Gaussian density of states. However, in most of the published reports, changes of carrier lifetime with energy and temperature are not taken into account. Since experimental evidence shows that lifetime significantly depends on energy and temperature, here we propose a model that describes two basic parameters of luminescence: lifetime of carries and emission energy as a function of temperature in the case of quantum wells and layers that are characterized by potential fluctuations. Comparison of the measured energy and lifetime dependences on temperature in specially grown InGaN/GaN quantum wells and InAlGaN layer shows very good agreement with the proposed theoretical approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.