Abstract

Spatial oscillations of proteins in bacteria have recently attracted much attention. The cellular mechanism underlying these oscillations can be studied at molecular as well as at more macroscopic levels. We construct a minimal mathematical model with two proteins that is able to produce self-sustained regular pole-to-pole oscillations without having to take into account molecular details of the proteins and their interactions. The dynamics of the model is based solely on diffusion across the cell body and protein reactions at the poles, and is independent of stimuli coming from the environment. We solve the associated system of reaction-diffusion equations and perform a parameter scan to demonstrate robustness of the model for two possible sets of the reaction functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call