Abstract

The model of local control of oxygen delivery in the microvasculature developed by H. J. Granger and A. P. Shepherd (1973, Microvasc. Res. 5, 49–72) was extended to describe microcirculatory blood flow in sickle cell disease. Two major characteristics of sickle cell blood were incorporated into the model: (1) an abnormal blood viscosity which is dependent on the degree of hemoglobin oxygen saturation and hematocrit, and (2) a reduced affinity of hemoglobin (Hb) for oxygen. Sickle cell blood viscosity as a function of oxygen saturation and hematocrit was modeled empirically based upon existing data. Alterations in HbO 2 affinity were studied in the model by introducing P 50 as an independent variable. The altered oxygen supply/demand relationship in sickle cell disease was simulated following an increase in tissue metabolic demand and a decrease in arteriolar blood flow. The results were analyzed to evaluate the roles of the various rheological characteristics of sickle cell blood in affecting microcirculatory dynamics and tissue oxygen delivery. It was demonstrated that, within the hematocrit range of 20 to 45%, the elevation of P 50 from 27 to 38 mm Hg in sickle cell blood is adequate to compensate for the diminished O 2 content, despite an elevated blood viscosity, and maintain near normal tissue pO 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.