Abstract
The effects of interactions (dipolar and exchange) on the magnetic behavior of granular solid systems are examined using a Monte Carlo model capable of predicting the temperature and time dependence of the magnetic properties. Using this model the interaction effects on the magnetization and the magnetoresistance are studied. The results show that these properties depend critically on the strength and nature of the interactions. Magnetostatic interactions are found to decrease both remanence and coercivity and Hc is predicted to decrease linearly with concentration. It is shown that spatial disorder may be responsible for an increase of coercivity with exchange coupling which has been observed in some experimental studies. In systems with no hysteresis, magnetostatic interaction effects are found to increase the superparamagnetic transition temperature, in agreement with experimental data and previous analytical treatments. Calculations of the giant magnetoresistance (GMR) show that magnetostatic interaction effects give rise to a finite positive resistivity at zero field which increases with concentration. This causes the value of the maximum change in resistivity, which occurs near the coercivity, to be greater than the value at zero field. These calculations are in agreement with experimental observations of GMR in granular solids. It is predicted that the GMR is strongly dependent on the spin diffusion length via the local spin–spin correlation function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.