Abstract
Microbes require multiple essential elements that they acquire from the environment independently. Here we investigate how microbial stoichiometry and uptake rates depend on the conditions in which they grow. We modify a recent model of growth based on a multinutrient extension of the Droop model to allow a trade-off between ability to acquire two essential resources. In a static analysis, we show that the optimal allocation strategy is the one that results in colimitation by both nutrients. We then add a dynamic equation to model the physiological acclimation uptake rates in changing conditions. This dynamic model predicts that the response of organismal stoichiometry to nutrient supply ratio can vary over time. The response of organismal stoichiometry and growth rate to a nutrient pulse depends on the speed at which cells adapt their uptake rates. In a variable environment, very fast or very slow acclimation may be better strategies than intermediate speed acclimation. We suggest experimental tests of the model and avenues for future model development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.