Abstract

We present a model of the chemotactic mechanism of Escherichia coli that exhibits both initial excitation and eventual complete adaptation to any and all levels of stimulus ("exact" adaptation). In setting up the reaction network, we use only known interactions and experimentally determined cytosolic concentrations. Whenever possible, rate coefficients are first assigned experimentally measured values; second, we permit some variation in these rate coefficients by using a multiple-well optimization technique and incremental adjustment to obtain values that are sufficient to engender initial response to stimuli (excitation) and an eventual return of behavior to baseline (adaptation). The predictions of the model are similar to the observed behavior of wild-type bacteria in regard to the time scale of excitation in the presence of both attractant and repellent. The model predicts a weaker response to attractant than that observed experimentally, and the time scale of adaptation does not depend as strongly upon stimulant concentration as does that for wild-type bacteria. The mechanism responsible for long-term adaptation is local rather than global: on addition of a repellent or attractant, the receptor types not sensitive to that attractant or repellent do not change their average methylation level in the long term, although transient changes do occur. By carrying out a phenomenological simulation of bacterial chemotaxis, we find that the model is insufficiently sensitive to effect taxis in a gradient of attractant. However, by arbitrarily increasing the sensitivity of the motor to the tumble effector (phosphorylated CheY), we can obtain chemotactic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.