Abstract

In this paper the scatter component of computed tomography dose profiles is modeled using the solution to a nonlinear ordinary differential equation. This scatter function is summed with a modeled primary function of approximate trapezoidal shape. The primary dose profile is modeled to include the analytic continuation of the Heaviside step function. A mathematical theory is developed in a Banach space. The modeled function is used to accurately fit data from a 256-slice GE Revolution scanner. A 60 cm long body phantom is assembled and used for data collection with both a pencil chamber and a Farmer-type chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.