Abstract
A saturable multi-compartment pharmacokinetic model for the anti-cancer drug paclitaxel is proposed based on a meta-analysis of pharmacokinetic data published over the last two decades. We present and classify the results of time series for the drug concentration in the body to uncover the underlying power laws. Two dominant fractional power law exponents were found to characterize the tails of paclitaxel concentration-time curves. Short infusion times led to a power exponent of -1.57 ± 0.14, while long infusion times resulted in tails with roughly twice the exponent. Curves following intermediate infusion times were characterized by two power laws. An initial segment with the larger slope was followed by a long-time tail characterized by the smaller exponent. The area under the curve and the maximum concentration exhibited a power law dependence on dose, both with compatible fractional power exponents. Computer simulations using the proposed model revealed that a two-compartment model with both saturable distribution and elimination can reproduce both the single and crossover power laws. Also, the nonlinear dose-dependence is correlated with the empirical power law tails. The longer the infusion time the better the drug delivery to the tumor compartment is a clinical recommendation we propose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.