Abstract

CatSpers are calcium (Ca(2+)) channels that are located along the principal piece of mammalian sperm flagella and are directly linked to sperm motility and hyperactivation. It has been observed that Ca(2+) entry through CatSper channels triggers a tail to head Ca(2+) propagation in mouse sperm, as well as a sustained increase of Ca(2+) in the head. Here, we develop a mathematical model to investigate this propagation and sustained increase in the head. A 1-d reaction-diffusion model tracking intracellular Ca(2+) with flux terms for the CatSper channels, a leak flux, and plasma membrane Ca(2+) clearance mechanism is studied. Results of this simple model exhibit tail to head Ca(2+) propagation, but no sustained increase in the head. Therefore, in this model, a simple plasma membrane pump-leak system with diffusion in the cytosol cannot account for these experimentally observed results. It has been proposed that Ca(2+) influx from the CatSper channels induce additional Ca(2+) release from an internal store. We test this hypothesis by examining the possible role of Ca(2+) release from the redundant nuclear envelope (RNE), an inositol 1,4,5-trisphosphate (IP(3)) gated Ca(2+) store in the neck. The simple model is extended to include an equation for IP(3) synthesis, degradation, and diffusion, as well as flux terms for Ca(2+) in the RNE. When IP(3) and the RNE are accounted for, the results of the model exhibit a tail to head Ca(2+) propagation as well as a sustained increase of Ca(2+) in the head.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.