Abstract

This paper discusses the general formulation of a model that describes carbon storage in a forest and its timber products as a function of the forest growth curve, the rotation period and the carbon retention curves for the timber products. After a number of rotations, the rotation-averaged quantity of stored carbon approaches an asymptotic value. It is shown that, when forests are managed for maximum sustained yield of biomass, the contribution to asymptotic carbon storage from timber products is about 2.5D/T* times the contribution from living trees, where D is the characteristic decay time for reconversion of timber products to carbon dioxide, and T* is the normal rotation period for maximum sustained yield. For a given value of D/T*, carbon storage can be optimized if the policy of maximizing sustained yield is relaxed. For D/T* < 1, as the rotation period is increased indefinitely, the asymptotic level of carbon storage increases monotonically toward the value of the carbon content of living trees at maturity, g(f). For D/T* > 1, there is a finite, optimal rotation period, T(o), greater than T*, for which asymptotic carbon storage is greater than g(f). As D/T* tends to large values, however, T(o) tends to T*, so that, in this limit, management for maximum sustained yield also ensures maximum carbon storage. From initial planting, the time taken to reach asymptotic carbon storage decreases as the normal rotation period, T*, decreases, but increases almost linearly with increasing decay time of timber products, D. This result qualifies the short-term value of any particular planting strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.