Abstract

A kinetic model of the formation of axial heterostructures in nanocrystalline wires (nanowires, NWs) of III–V semiconductor compounds growing according to the vapor–liquid–solid (VLS) mechanism is proposed. A general system of nonstationary equations for effective fluxes of two elements of the same group (e.g., group III) is formulated that allows the composition profile of a heterostructure to be calculated as a function of the coordinate and epitaxial growth conditions, including the flux of a group V element. Characteristic times of the composition relaxation, which determine the sharpness of the heteroboundary (heterointerface), are determined in the linear approximation. A temporal interruption (arrest) of fluxes during the switching of elements for a period exceeding these relaxation times must increase sharpness of the heteroboundary. Model calculations of the composition profile in a double GaAs/InAs/GaAs axial heterostructure have been performed for various NW radii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.