Abstract

Mechanisms of arterial adaptation to changes in blood flow rates were tested by comparing the predictions of a proposed theoretical model with available experimental data. The artery was modeled as an elastic membrane made of a nonlinear, incompressible, elastic material. Stimulation of the vascular smooth muscle was modeled through the generation of an active component of circumferential stress. The muscular tone was modulated by flow-induced shear stress sensed by the arterial endothelium, and is responsible for the vasomotor adjustment of the deformed arterial diameter in response to changes in blood flow. This study addresses the hypothesis that the synthetic and proliferative activity of smooth muscle cells, leading to a change in arterial dimensions, is shear stress dependent and is associated with changes in the contractile state of the smooth muscle cells and changes in the circumferential wall stress. Remodeling to a step change in flow was formulated as an initial-value problem for a system of first order autonomous differential equations for the evolution of muscular tone and evolution of arterial geometry. The governing equations were solved numerically for model parameters identified from experimental data available in the literature. The model predictions for the time variation of the geometrical dimensions and their asymptotic values were found to be in qualitative agreement with available experimental data. Experiments for validating the introduced hypotheses and further generalizations of the model were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call