Abstract

Based on the idea of hypothetical 4-dimensial substance with an inverse population of energy levels, a model of accelerated expansion of the Universe has been developed, which describes Hubble diagrams with great accuracy for type Ia supernovae, quasars and gamma-ray burst sources at the Hubble parameter value of 67.7 km/s/Mpc, coinciding with the value obtained from analysis of inhomogeneities of relic radiation. Calculations at the Hubble parameter value of 73.5 km/s/Mpc, obtained using the ΛCDM model based on the analysis of data on type Ia supernovae and cepheids, differ markedly from the observed data. An explanation of the two values of the Hubble constant is proposed. It is shown that in this model, the magnitude of 13.8 billion years characterizes not the age of the Universe, but the time of propagation of light from those galaxes whose acceleration of removal has a minimal value. Based on the recently discovered curvature of the Universe, estimates are given of the lower limits of its size and lifetime, which turned out to be at least 270 billon years. The probability of transition from the excited state to the underlying energy levels of a hypothetical 4-dimensial substance, as well as the low of increasing energy density as a result of transitions to the underlying levels of this substance, is determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call