Abstract

The axial symmetry of a railway wheel is taken into account to expand its vibrational response around the circumferential direction using Fourier series. This allows the vibroacoustic problem of the wheel to be formulated in a two-dimensional frame, solving for the dynamic and acoustic variables analytically in the circumferential direction. By adopting an Eulerian approach, the inertial effects associated with the rotation of the wheelset are included in the model, assuming a constant angular speed of rotation. To represent a railway wheelset, the wheel is constrained at the inner edge of the hub and the contribution of the rigid body motion of the wheelset is superimposed on its response. The latter is evaluated analytically under the assumption of small rigid body displacements. The computational efficiency of the proposed methodology is found to be three orders of magnitude greater than a full three-dimensional methodology, without compromising the accuracy. The results are compared in terms of acoustic radiation with the commercial package Ansys, showing similar sound power levels in almost all the frequency range apart from some differences at low frequencies due to the use of an acoustic model based on radiation ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call