Abstract

In order to simulate radio refquency (RF)-heating in toroidal plasmas in the banana regime a model collision operator has been developed, which relaxes the distribution function towards a prescribed local Maxwellian either determined by experiments or transport codes. The pitch angle scattering by Coulomb collisions gives rise to spatial diffusion in toroidal plasmas because of the coupling between spatial and velocity coordinates. The coupling between the spatial and velocity components results in drift terms in the Monte Carlo formulation of the Fokker–Planck equation due to spatial derivatives of the Jacobian, the fraction of the trapped particles, the density and the temperature profiles. A simple RF operator is used to test the collision operator in conjunction with RF heating. The formation of a high-energy tail on the distribution function during RF heating leads to reduction of the density of the thermal ions as the tail builds up. For central heating this reduction can lead to hollow density profiles of thermal ions. The spatial diffusion caused by the relaxation of the thermal ions towards a prescribed density profile then gives rise to an increase of the density of resonant ions in regions with strong heating where the thermal ions diffuse towards higher energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.