Abstract

Abstract Modern networking systems can benefit from Cognitive Radio (CR) because it mitigates spectrum scarcity. CR is prone to jamming attacks due to shared communication medium that results in a drop of spectrum usage. Existing solutions to jamming attacks are frequently based on Q-learning and deep Q-learning networks. Such solutions have a reputation for slow convergence and learning, particularly when states and action spaces are continuous. This paper introduces a unique reinforcement learning driven anti-jamming scheme that uses adversarial learning mechanism to counter hostile jammers. A mathematical model is employed in the formulation of jamming and anti-jamming strategies based on deep deterministic policy gradients to improve their policies against each other. An open-AI gym-oriented customized environment is used to evaluate proposed solution concerning power-factor and signal-to-noise-ratio. The simulation outcome shows that the proposed anti-jamming solution allows the transmitter to learn more about the jammer and devise the optimal countermeasures than conventional algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.