Abstract

Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions.

Highlights

  • Around the world, vector-borne diseases cause medical and economic burdens as current control measures fail to cope, and face possible negative effects of local environmental change

  • We have shown by mathematical modeling that genetic control of the dengue vector, using RIDL male releases in a Sterile Insect Technique (SIT) program, can eliminate the disease at a lower cost than the direct and indirect cost savings from the illnesses averted

  • Of all transgenic insertion lines created, only those with sufficiently close to 100% lethality in heterozygous form are chosen for further development; those undergo tests for traits such as mating competitiveness, and only successful lines progress through the phases

Read more

Summary

Introduction

Vector-borne diseases cause medical and economic burdens as current control measures fail to cope, and face possible negative effects of local environmental change. Genetic techniques targeting insect vectors may provide new approaches to disease control; to illustrate their potential benefit, we focus on dengue, arguably the most important arboviral disease of humans. An estimated 50–100 million infections occur annually; an annual average of over 0.9 million severe cases are reported to the World Health Organization (WHO) and roughly 18–19,000 dengue-related deaths are registered each year [2,4,5,6]. With most deaths and cases reported to WHO occurring among children (age 0–14 years) [4,6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call