Abstract
It is shown via molecular dynamics simulations that the occurrence of wall slip for linear alkanes confined between geometrically smooth surfaces depends on the wall-fluid interactions and the chain length of the lubricant molecules. A wall slip model based on the competition between these two factors is introduced. A surface parameter accounts for the wall-fluid interaction and commensurability, and is valid for both canonical and complex crystal lattices: this quantity is then linked to the shear stress transferred to the fluid molecules. The lubricant internal cohesion under confinement is described by a bulk viscosity term. Finally, a semi-analytical law for wall slip prediction including both the fluid viscosity and the surface characterization parameter is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.