Abstract
It is well known that within wafer non-uniformity (WIWNU), due to the variation in material, removal rate (MRR) in the whole wafer plays an important role in determining the quality of a wafer planarized by CMP. Various material removal models also suggest that the MRR is strongly influenced by the interface pressure. In the present work, an analytical expression for pressure distribution at the wafer and pad interface is developed. It is observed that depending on the wafer curvature and polishing conditions, the interface pressure may exhibit significant variation. The analytical model predictions are first verified against finite element method (FEM) simulations. The predicted analytical pressure profiles are then utilized in Preston's equation to estimate the MRR, and these MRR predictions are also compared to experimental observations. The analytical results suggest, that for a specified wafer curvature there exists a certain polishing condition (and vice versa) that will enable holding the WIWNU within a specified tolerance band. The proposed model facilitates the design space exploration for such optimal polishing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.