Abstract

The nonlinear dynamics of two-dimensional electrostatic interchange modes in a magnetized plasma is investigated through a simple model that replaces the instability mechanism due to magnetic field curvature by an external source of vorticity and mass. Simulations in a cylindrical domain, with a spatially localized and randomized source at the center of the domain, reveal the eruption of mushroom-shaped bursts that propagate radially and are absorbed by the boundaries. Burst sizes and the interburst waiting times exhibit power-law statistics, which indicates long-range interburst correlations, similar to what has been found in sandpile models for avalanching systems. It is shown from the simulations that the dynamics can be characterized by a Yaglom relation for the third-order mixed moment involving the particle number density as a passive scalar and the E×B drift velocity, and hence that the burst phenomenology can be described within the framework of turbulence theory. Statistical features are qualitatively in agreement with experiments of intermittent transport at the edge of plasma devices, and suggest that essential features such as transport can be described by this simple model of bursty turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.