Abstract
Recent experimental findings indicate that Purkinje cells in the cerebellum represent time intervals by mechanisms other than conventional synaptic weights. These findings add to the theoretical and experimental observations suggesting the presence of intra-cellular mechanisms for adaptation and processing. To account for these experimental results we propose a new biophysical model for time interval learning in a Purkinje cell. The numerical model focuses on a classical delay conditioning task (e.g. eyeblink conditioning) and relies on a few computational steps. In particular, the model posits the activation by the parallel fiber input of a local intra-cellular calcium store which can be modulated by intra-cellular pathways. The reciprocal interaction of the calcium signal with several proteins forming negative and positive feedback loops ensures that the timing of inhibition in the Purkinje cell anticipates the interval between parallel and climbing fiber inputs during training. We systematically test the model ability to learn time intervals at the 150-1000 ms time scale, while observing that learning can also extend to the multiple seconds scale. In agreement with experimental observations we also show that the number of pairings required to learn increases with inter-stimulus interval. Finally, we discuss how this model would allow the cerebellum to detect and generate specific spatio-temporal patterns, a classical theory for cerebellar function.
Highlights
The brain’s ability to measure time, discriminate temporal patterns, and produce appropriately timed responses is critical to many forms of learning and behavior [1]
Positive and negative feedback loops can ensure that elements integrating the “clock” signal and acting as an output will activate at the correct timing
The model is based on the cAMP-Protein kinase A (PKA) pathway involved in several forms of classical conditioning
Summary
The brain’s ability to measure time, discriminate temporal patterns, and produce appropriately timed responses is critical to many forms of learning and behavior [1]. This is evident in the cerebellar system’s involvement in the learning and expression of the timing of associations by classical conditioning, such as delay eyeblink conditioning [2]. The main circuitry for delay eyeblink conditioning seems to be comprised of (see Fig 1): parallel fibers that convey information about the CS (e.g. auditory cue); climbing fibers that are activated by the US (e.g. air puff to the eye); and the inhibitory Purkinje cells, the output elements of the cerebellar cortex, which seem to be responsible for gating the CR (blink). The timing mechanism might be located in the cerebellar cortex [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.