Abstract

In the manufacturing process of fiber-reinforced composite materials, the preforming of dry fiber fabrics is typically carried out under specific out-of-plane pressure, in-plane tension, and at designated temperatures. The fabric exhibits significant time and temperature-dependent permanent deformation as well as creep/recovery behavior. Gaining a better understanding of these phenomena and harnessing predictive capabilities will be instrumental in achieving more precise control over fiber volume fraction and material composition. In this paper, creep/recovery experiments and cyclic loading-unloading tests were conducted on CF3031 dry fiber preforms under various in-plane tensions and temperatures, measuring in-plane strains using Fiber Bragg Grating (FBG) sensors. Based on this data, a modified Burgers viscoelastic-plastic model has been proposed to describe the time-dependent creep/recovery behavior of dry fiber fabric preforming under the coupled effects of in-plane tension, out-of-plane pressure, and temperature variations. This model employs a single set of equations and parameters to represent the complete creep/recovery process of the material. The experimental results align well with the predicted outcomes across different compression scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call