Abstract

We propose a two-dimensional model for the organization of stabilized microtubules driven by molecular motors in an unconfined geometry. In this model two kinds of dynamics are competing. The first one is purely diffusive, with an interaction between the rotational degrees of freedom, the second one is a local drive, dependent on microtubule polarity. As a result, there is a configuration dependent driving field. Applying a molecular field approximation, we are able to derive continuum equations. A study on the solutions shows nonequilibrium steady states. The presence and stability of such self-organized states are investigated in terms of entropy production. Numerical simulations confirm analytical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.