Abstract

This article investigates the electronic transport properties of ZnO/ CdS/ Cu(In,Ga)Se 2 heterojunction solar cells during and after illumination or forward bias in the dark. We observe a relaxation of the open circuit voltage under constant illumination as well as a relaxation of the voltage drop over the device under constant forward bias current in the dark. Both phenomena are accompanied by an increase of the sample capacitance. We introduce a general quantitative model concept for the open circuit voltage relaxation and related effects in heterojunction devices that explains the phenomena as a consequence of the persistent capture of charge carriers within the space charge region. We apply our concept to develop a specific quantitative model for the observed metastablity in Cu(In,Ga)Se 2 heterojunction solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.